Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Front Microbiol ; 14: 1251065, 2023.
Article in English | MEDLINE | ID: mdl-37901834

ABSTRACT

Introduction: SARS-CoV-2 subverts host cell processes to facilitate rapid replication and dissemination, and this leads to pathological inflammation. Methods: We used niclosamide (NIC), a poorly soluble anti-helminth drug identified initially for repurposed treatment of COVID-19, which activates the cells' autophagic and lipophagic processes as a chemical probe to determine if it can modulate the host cell's total lipid profile that would otherwise be either amplified or reduced during SARS-CoV-2 infection. Results: Through parallel lipidomic and transcriptomic analyses we observed massive reorganization of lipid profiles of SARS-CoV-2 infected Vero E6 cells, especially with triglycerides, which were elevated early during virus replication, but decreased thereafter, as well as plasmalogens, which were elevated at later timepoints during virus replication, but were also elevated under normal cell growth. These findings suggested a complex interplay of lipid profile reorganization involving plasmalogen metabolism. We also observed that NIC treatment of both low and high viral loads does not affect virus entry. Instead, NIC treatment reduced the abundance of plasmalogens, diacylglycerides, and ceramides, which we found elevated during virus infection in the absence of NIC, resulting in a significant reduction in the production of infectious virions. Unexpectedly, at higher viral loads, NIC treatment also resulted in elevated triglyceride levels, and induced significant changes in phospholipid metabolism. Discussion: We posit that future screens of approved or new partner drugs should prioritize compounds that effectively counter SARS-CoV-2 subversion of lipid metabolism, thereby reducing virus replication, egress, and the subsequent regulation of key lipid mediators of pathological inflammation.

2.
Am J Trop Med Hyg ; 107(4): 873-880, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36096408

ABSTRACT

Zika virus (ZIKV) infections occurred in epidemic form in the Americas in 2014-2016, with some of the earliest isolates in the region coming from Haiti. We isolated ZIKV from 20 children with acute undifferentiated febrile illness who were part of a cohort of children seen at a school clinic in the Gressier region of Haiti. The virus was also isolated from three pools of Aedes aegypti mosquitoes collected at the same location. On phylogenetic analysis, three distinct ZIKV clades were identified. Strains from all three clades were present in Haiti in 2014, making them among the earliest isolates identified in the Western Hemisphere. Strains from all three clades were also isolated in 2016, indicative of their persistence across the time period of the epidemic. Mosquito isolates were collected in 2016 and included representatives from two of the three clades; in one instance, ZIKV was isolated from a pool of male mosquitoes, suggestive of vertical transmission of the virus. The identification of multiple ZIKV clades in Haiti at the beginning of the epidemic suggests that Haiti served as a nidus for transmission within the Caribbean.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Child , Haiti/epidemiology , Humans , Male , Mosquito Vectors , Phylogeny , Schools
3.
Microbiol Resour Announc ; 11(9): e0044922, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35950865

ABSTRACT

Genotype 1A hepatovirus A was identified by quantitative reverse transcription-PCR and isolated from plasma from a Haitian child with acute undifferentiated febrile illness and malaise. The strain was most closely related to Brazilian strains, consistent with recognized patterns of virus movement in the Caribbean region.

4.
Lancet Reg Health Am ; 11: 100231, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36778921

ABSTRACT

Background: Simultaneous dengue virus (DENV) and West Nile virus (WNV) outbreaks in Florida, USA, in 2020 resulted in 71 dengue virus serotype 1 and 86 WNV human cases. We hypothesized that we would find a number of DENV-1 positive mosquito pools, and that the distribution of these arbovirus-positive mosquito pools would be associated with those neighborhoods for which imported DENV cases have been recently reported in 2019 and 2020. Methods: We collected and screened Aedes aegypti, Ae. albopictus, Anopheles crucians, Culex coronator, Cx. nigripalpus, and Cx. quinquefasciatus mosquitoes from Miami-Dade County (Florida) for DENV and WNV by rRT-qPCR. Spatial statistical analyses were performed to capture positive mosquito pool distribution in relation to land use, human demography, environmental variables, mosquito trap placement and reported human travel associated DENV cases to guide future mosquito control outbreak responses. Findings: A rapid screen of 7,668 mosquitoes detected four DENV serotype 2 (DENV-2), nine DENV-4 and nine WNV-positive mosquito pools, which enabled swift and targeted abatement of trap sites by mosquito control. As expected, DENV-positive pools were in urban areas; however, we found WNV-positive mosquito pools in agricultural and recreational areas with no historical reports of WNV transmission. Interpretation: These findings demonstrate the importance of proactive arbovirus surveillance in mosquito populations to prevent and control outbreaks, particularly when other illnesses (e.g., COVID-19), which present with similar symptoms, are circulating concurrently. Growing evidence for substantial infection prevalence of dengue in mosquitoes in the absence of local index cases suggests a higher level of dengue endemicity in Florida than previously thought. Funding: This research was supported in part by U.S. Centers for Disease Control and Prevention (CDC) grant 1U01CK000510-03, Southeastern Regional Center of Excellence in Vector Borne Diseases Gateway Program.

5.
Viruses ; 13(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34835038

ABSTRACT

Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Dengue/transmission , Mosquito Vectors/virology , Aedes/genetics , Animals , Dengue/epidemiology , Dengue Virus/classification , Florida/epidemiology , Gastrointestinal Tract/virology , Genotype , Geography , Humans , Mosquito Vectors/genetics , Saliva/virology , Serogroup
6.
Nature ; 600(7887): 133-137, 2021 12.
Article in English | MEDLINE | ID: mdl-34789872

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs1,2, underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae, human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses3-5. Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human-animal contact.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Deltacoronavirus/isolation & purification , Swine/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/virology , Amino Acid Sequence , Animals , Bayes Theorem , Child , Chlorocebus aethiops , Conserved Sequence , Coronavirus Infections/blood , Deltacoronavirus/classification , Deltacoronavirus/genetics , Deltacoronavirus/pathogenicity , Female , Haiti/epidemiology , Humans , Male , Models, Molecular , Mutation , Phylogeny , Vero Cells , Viral Zoonoses/blood
7.
Front Microbiol ; 12: 734903, 2021.
Article in English | MEDLINE | ID: mdl-34630357

ABSTRACT

Dengue virus is the most prevalent mosquito-borne virus, causing approximately 390 million infections and 25,000 deaths per year. Aedes aegypti, the primary mosquito vector of dengue virus, is well-established throughout the state of Florida, United States. Autochthonous transmission of dengue virus to humans in Florida has been increasing since 2009, alongside consistent importation of dengue cases. However, most cases of first infection with dengue are asymptomatic and the virus can be maintained in mosquito populations, complicating surveillance and leading to an underestimation of disease risk. Metagenomic sequencing of A. aegypti mosquitoes in Manatee County, Florida revealed the presence of dengue virus serotype 4 (DENV-4) genomes in mosquitoes from multiple trapping sites over 2years, in the absence of a human DENV-4 index case, and even though a locally acquired case of DENV-4 has never been reported in Florida. This finding suggested that: (i) DENV-4 may circulate among humans undetected; (ii) the virus was being maintained in the mosquito population, or (iii) the detected complete genome sequence may not represent a viable virus. This study demonstrates that an infectious clone generated from the Manatee County DENV-4 (DENV-4M) sequence is capable of infecting mammalian and insect tissue culture systems, as well as adult female A. aegypti mosquitoes when fed in a blood meal. However, the virus is subject to a dose dependent infection barrier in mosquitoes, and has a kinetic delay compared to a phylogenetically related wild-type (WT) control virus from a symptomatic child, DENV-4H (strain Homo sapiens/Haiti-0075/2015, GenBank accession MK514144.1). DENV-4M disseminates from the midgut to the ovary and saliva at 14days post-infection. Viral RNA was also detectable in the adult female offspring of DENV-4M infected mosquitoes. These results demonstrate that the virus is capable of infecting vector mosquitoes, is transmissible by bite, and is vertically transmitted, indicating a mechanism for maintenance in the environment without human-mosquito transmission. These findings suggest undetected human-mosquito transmission and/or long-term maintenance of the virus in the mosquito population is occurring in Florida, and underscore the importance of proactive surveillance for viruses in mosquitoes. GRAPHICAL ABSTRACTIn order to better assess the public health risk posed by a detection of DENV-4 RNA in Manatee County, FL Aedes aegypti, we produced an infectious clone using the sequence from the wild-caught mosquitoes and characterized it via laboratory infections of mosquitoes and mosquito tissues.

8.
mSphere ; 6(4): e0027121, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34232077

ABSTRACT

Dengue virus serotype 4 (DENV-4) circulated in Aedes aegypti in 2016 and 2017 in Florida in the absence of human index cases, compelling a full assessment of local mosquito vector competence and DENV-4 risk. To better understand DENV-4 transmission risk in Florida, we used an expanded suite of tests to measure and compare the vector competencies of both an established colony of A. aegypti (Orlando strain [ORL]) and a field-derived colony from Collier County, FL, in 2018 (COL) for a Haitian DENV-4 human field isolate and a DENV-4 laboratory strain (Philippines H241). We immediately noted that ORL saliva positivity was higher for the field than for laboratory DENV-4 strains. In a subsequent comparison with the recent COL mosquito colony, we also observed significantly higher midgut infection of COL and ORL by the Haitian DENV-4 field strain and a significantly higher saliva positivity rate for COL, although overall saliva virus titers were similar between the two. These data point to a potential midgut infection barrier for the DENV-4 laboratory strain for both mosquito colonies and indicate that the marked differences in transmission potential estimates hinge on virus-vector combinations. Our study highlights the importance of leveraging an expanded suite of testing methods with emphasis on utilizing local mosquito populations and field-relevant dengue virus serotypes and strains to accurately estimate transmission risk in a given setting. IMPORTANCE DENV-4 was found circulating in Florida (FL) A. aegypti mosquitoes in the absence of human index cases in the state (2016 to 2017). How DENV-4 was maintained locally is unclear, presenting a major gap in our understanding of DENV-4 public health risk. We determined the baseline arbovirus transmission potential of laboratory and field colonies of A. aegypti for both laboratory and field isolates of DENV-4. We observed a high transmission potential of field populations of A. aegypti and evidence of higher vertical transmission of the DENV-4 field isolate, providing clues to the possible mechanism of undetected DENV-4 maintenance in the state. Our findings also move the field forward in the development of best practices for evaluating arbovirus vector competence, with evidence that transmission potential estimates vary depending on the mosquito-virus combinations. These data emphasize the poor suitability of laboratory-established virus strains and the high relevance of field-derived mosquito populations in estimating transmission risk.


Subject(s)
Aedes/virology , Dengue Virus/pathogenicity , Dengue/transmission , Mosquito Vectors/virology , Serogroup , Animals , Dengue/virology , Dengue Virus/classification , Female , Florida , Haiti , Humans , Infectious Disease Transmission, Vertical , Saliva/virology , Viral Load
9.
PLoS Negl Trop Dis ; 15(6): e0009494, 2021 06.
Article in English | MEDLINE | ID: mdl-34133422

ABSTRACT

We report the identification of two orthobunyaviruses, Melao virus (MELV) and Oropouche virus (OROV), in plasma specimens from Haitian children with acute febrile illness who presented during outbreaks caused by alpha- and flaviviruses in 2014. Heretofore not described as a human pathogen, MELV was isolated in cell culture from the plasma of five case patients. OROV RNA was detected in the plasma of an additional child, using an unbiased sequencing approach, with phylogenetic inference suggesting a close relationship with strains from Brazil. Abdominal pain was reported by four case patients with MELV infections, with lymphadenopathy noted in two cases. Our findings document the occurrence of these orthobunyaviruses within the Caribbean region and highlight the critical importance of surveillance with viral genome sequence analyses to identify outbreaks caused by these and other emerging viruses.


Subject(s)
Bunyaviridae Infections/epidemiology , Orthobunyavirus/isolation & purification , Abdominal Pain , Adolescent , Bunyaviridae Infections/blood , Bunyaviridae Infections/diagnosis , Child , Child, Preschool , Communicable Diseases, Emerging/virology , Female , Genome, Viral , Haiti/epidemiology , Humans , Lymphadenopathy , Male , Orthobunyavirus/classification , Orthobunyavirus/genetics , Phylogeny , RNA, Viral/genetics
10.
Int J Infect Dis ; 108: 212-216, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33901650

ABSTRACT

OBJECTIVE: To determine if viable virus could be isolated from the air within a car driven by a patient infected with SARS-CoV-2, and to assess the size range of the infectious particles. METHODS: We used a Sioutas personal cascade impactor sampler (PCIS) to screen for SARS-CoV-2 in a car driven by a COVID-19 patient. The patient, who had only mild illness without fever or cough and was not wearing a mask, drove the car for 15 min with the air conditioning turned on and windows closed. The PCIS was clipped to the sun-visor above the front passenger seat and was retrieved from the car two hours after completion of the drive. RESULTS: SARS-CoV-2 was detectable at all PCIS stages by PCR and was cultured from the section of the sampler collecting particles in the 0.25-0.50 µm size range. CONCLUSIONS: Our data highlight the potential risk of SARS-CoV-2 transmission by minimally symptomatic persons in the closed space inside of a car and suggest that a substantial component of that risk is via aerosolized virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Automobiles , Cough , Humans
11.
medRxiv ; 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33791709

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, coronavirus emergence in our species has been associated with zoonotic transmissions from animal reservoirs 1,2 , underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae - Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus , - human infections reported to date have been limited to alpha- and betacoronaviruses 3 . We identify, for the first time, porcine deltacoronavirus (PDCoV) strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the nsp15 and the spike glycoprotein genes by convergent evolution. In particular, structural analysis predicts that one of the changes in the Spike S1 subunit, which contains the receptor-binding domain, may affect protein's flexibility and binding to the host cell receptor. Our findings not only underscore the ability of deltacoronaviruses to adapt and potentially lead to human-to-human transmission, but also raise questions about the role of such transmissions in development of pre-existing immunity to other coronaviruses, such as SARS-CoV-2.

12.
PLoS One ; 16(1): e0245352, 2021.
Article in English | MEDLINE | ID: mdl-33439885

ABSTRACT

In February and March, 2020, environmental surface swab samples were collected from the handle of the main entry door of a major university building in Florida, as part of a pilot surveillance project screening for influenza. Samples were taken at the end of regular classroom hours, between the dates of February 1-5 and February 19-March 4, 2020. Influenza A(H1N1)pdm09 virus was isolated from the door handle on four of the 19 days sampled. Both SARS-CoV-2 and A(H1N1)pdm09 virus were detected in a sample collected on February 21, 2020. Based on sequence analysis, the Florida SARS-CoV-2 strain (designated UF-11) was identical to strains being identified in Washington state during the same time period, while the earliest similar sequences were sampled in China/Hubei between Dec 30th 2019 and Jan 5th 2020. The first human case of COVID-19 was not officially reported in Florida until March 1st. In an analysis of sequences from COVID-19 patients in this region of Florida, there was only limited evidence of subsequent dissemination of the UF-11 strain. Identical or highly similar strains, possibly related through a common transmission chain, were detected with increasing frequency in Washington state between end of February and beginning of March. Our data provide further documentation of the rapid early spread of SARS-CoV-2 and underscore the likelihood that closely related strains were cryptically circulating in multiple U.S. communities before the first "official" cases were recognized.


Subject(s)
Environmental Monitoring , Influenza A Virus, H1N1 Subtype/isolation & purification , SARS-CoV-2/isolation & purification , Universities/statistics & numerical data , Florida , Humans , Phylogeny , SARS-CoV-2/classification , Surface Properties , Time Factors
13.
Int J Infect Dis ; 100: 476-482, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32949774

ABSTRACT

OBJECTIVES: Because the detection of SARS-CoV-2 RNA in aerosols but failure to isolate viable (infectious) virus are commonly reported, there is substantial controversy whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be transmitted through aerosols. This conundrum occurs because common air samplers can inactivate virions through their harsh collection processes. We sought to resolve the question whether viable SARS-CoV-2 can occur in aerosols using VIVAS air samplers that operate on a gentle water vapor condensation principle. METHODS: Air samples collected in the hospital room of two coronavirus disease-2019 (COVID-19) patients, one ready for discharge and the other newly admitted, were subjected to RT-qPCR and virus culture. The genomes of the SARS-CoV-2 collected from the air and isolated in cell culture were sequenced. RESULTS: Viable SARS-CoV-2 was isolated from air samples collected 2 to 4.8 m away from the patients. The genome sequence of the SARS-CoV-2 strain isolated from the material collected by the air samplers was identical to that isolated from the newly admitted patient. Estimates of viable viral concentrations ranged from 6 to 74 TCID50 units/L of air. CONCLUSIONS: Patients with respiratory manifestations of COVID-19 produce aerosols in the absence of aerosol-generating procedures that contain viable SARS-CoV-2, and these aerosols may serve as a source of transmission of the virus.


Subject(s)
Air Microbiology , Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Aerosols , COVID-19 , Coronavirus Infections/transmission , Hospitals , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
14.
medRxiv ; 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32793914

ABSTRACT

Background - There currently is substantial controversy about the role played by SARS-CoV-2 in aerosols in disease transmission, due in part to detections of viral RNA but failures to isolate viable virus from clinically generated aerosols. Methods - Air samples were collected in the room of two COVID-19 patients, one of whom had an active respiratory infection with a nasopharyngeal (NP) swab positive for SARS-CoV-2 by RT-qPCR. By using VIVAS air samplers that operate on a gentle water-vapor condensation principle, material was collected from room air and subjected to RT-qPCR and virus culture. The genomes of the SARS-CoV-2 collected from the air and of virus isolated in cell culture from air sampling and from a NP swab from a newly admitted patient in the room were sequenced. Findings - Viable virus was isolated from air samples collected 2 to 4.8m away from the patients. The genome sequence of the SARS-CoV-2 strain isolated from the material collected by the air samplers was identical to that isolated from the NP swab from the patient with an active infection. Estimates of viable viral concentrations ranged from 6 to 74 TCID50 units/L of air. Interpretation - Patients with respiratory manifestations of COVID-19 produce aerosols in the absence of aerosol-generating procedures that contain viable SARS-CoV-2, and these aerosols may serve as a source of transmission of the virus.

15.
mSphere ; 5(2)2020 04 29.
Article in English | MEDLINE | ID: mdl-32350095

ABSTRACT

The incidence of locally acquired dengue infections increased during the last decade in the United States, compelling a sustained research effort concerning the dengue mosquito vector, Aedes aegypti, and its microbiome, which has been shown to influence virus transmission success. We examined the "metavirome" of four populations of Aedes aegypti mosquitoes collected in 2016 to 2017 in Manatee County, FL. Unexpectedly, we discovered that dengue virus serotype 4 (DENV4) was circulating in these mosquito populations, representing the first documented case of such a phenomenon in the absence of a local DENV4 human case in this county over a 2-year period. We confirmed that all of the mosquito populations carried the same DENV4 strain, assembled its full genome, validated infection orthogonally by reverse transcriptase PCR, traced the virus origin, estimated the time period of its introduction to the Caribbean region, and explored the viral genetic signatures and mosquito-specific virome associations that potentially mediated DENV4 persistence in mosquitoes. We discuss the significance of prolonged maintenance of the DENV4 infections in A. aegypti that occurred in the absence of a DENV4 human index case in Manatee County with respect to the inability of current surveillance paradigms to detect mosquito vector infections prior to a potential local outbreak.IMPORTANCE Since 1999, dengue outbreaks in the continental United States involving local transmission have occurred only episodically and only in Florida and Texas. In Florida, these episodes appear to be coincident with increased introductions of dengue virus into the region through human travel and migration from countries where the disease is endemic. To date, the U.S. public health response to dengue outbreaks has been largely reactive, and implementation of comprehensive arbovirus surveillance in advance of predictable transmission seasons, which would enable proactive preventative efforts, remains unsupported. The significance of our finding is that it is the first documented report of DENV4 transmission to and maintenance within a local mosquito vector population in the continental United States in the absence of a human case during two consecutive years. Our data suggest that molecular surveillance of mosquito populations in high-risk, high-tourism areas of the United States may enable proactive, targeted vector control before potential arbovirus outbreaks.


Subject(s)
Aedes/virology , Dengue Virus/classification , Mosquito Vectors/virology , Virome , Animals , Dengue Virus/isolation & purification , Disease Outbreaks , Female , Florida , Genome, Viral , Seasons , Serogroup
16.
Aerosol Air Qual Res ; 20(6): 1167-1171, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33424954

ABSTRACT

The progression of COVID-19 worldwide can be tracked by identifying mutations within the genomic sequence of SARS-CoV-2 that occur as a function of time. Such efforts currently rely on sequencing the genome of SARS-CoV-2 in patient specimens (direct sequencing) or of virus isolated from patient specimens in cell cultures. A pilot SARS-CoV-2 air sampling study conducted at a clinic within a university student health care center detected the virus vRNA, with an estimated concentration of 0.87 virus genomes L-1 air. To determine whether the virus detected was viable ('live'), attempts were made to isolate the virus in cell cultures. Virus-induced cytopathic effects (CPE) were observed within two days post-inoculation of Vero E6 cells with collection media from air samples; however, rtRT-PCR tests for SARS-CoV-2 vRNA from cell culture were negative. Instead, three other fast-growing human respiratory viruses were isolated and subsequently identified, illustrating the challenge in isolating SARS-CoV-2 when multiple viruses are present in a test sample. The complete SAR-CoV-2 genomic sequence was nevertheless determined by Sanger sequencing and most closely resembles SARS-CoV-2 genomes previously described in Georgia, USA. Results of this study illustrate the feasibility of tracking progression of the COVID-19 pandemic using environmental aerosol samples instead of human specimens. Collection of a positive sample from a distance more than 2 m away from the nearest patient traffic implies the virus was in an aerosol.

17.
Viruses ; 12(1)2019 12 20.
Article in English | MEDLINE | ID: mdl-31861885

ABSTRACT

We report the detection and gene coding sequences of three novel Orbivirus species found in six dead farmed white-tailed deer in the United States. Phylogenetic analyses indicate that the new orbiviruses are genetically closely related to the Guangxi, Mobuck, Peruvian horse sickness, and Yunnan orbiviruses, which are thought to be solely borne by mosquitos. However, four of the six viruses analyzed in this work were found as co-infecting agents along with a known cervid pathogen, epizootic hemorrhagic disease virus-2 (EHDV-2), raising questions as to whether the new viruses are primary pathogens or secondary pathogens that exacerbate EHDV-2 infections. Moreover, EHDV-2 is known to be a Culicoides-borne virus, raising additional questions as to whether Culicoides species can also serve as vectors for the novel orbiviruses, if mosquitoes can vector EHDV-2, or whether the deer were infected through separate bites by the insects. Our findings expand knowledge of the possible viral pathogens of deer in the United States. Moreover, due to the close genetic relatedness of the three new orbiviruses to viruses that are primary pathogens of cattle and horses, our findings also underscore a crucial need for additional research on the potential role of the three new orbiviruses as pathogens of other animals.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/virology , Animals, Domestic , Deer , Orbivirus , Reoviridae Infections/veterinary , Animals , Computational Biology/methods , Genome, Viral , Genomics/methods , Geography, Medical , Orbivirus/classification , Orbivirus/genetics , Orbivirus/ultrastructure , Phylogeny , Public Health Surveillance , United States/epidemiology
18.
Clin Infect Dis ; 68(1): 143-145, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29893806

ABSTRACT

Keystone virus, a California-serogroup orthobunyavirus, was first isolated in 1964 from mosquitoes in Keystone, Florida. There were no prior reports of isolation from humans, despite studies suggesting that ~20% of persons living in the region are seropositive. We report virus isolation from a Florida teenager with a rash and fever.


Subject(s)
Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/pathology , Exanthema/etiology , Fever/etiology , Orthobunyavirus/isolation & purification , Adolescent , Bunyaviridae Infections/virology , Florida , Humans , Male , Plant Viruses
19.
PLoS One ; 13(6): e0198070, 2018.
Article in English | MEDLINE | ID: mdl-29879170

ABSTRACT

BACKGROUND: According to the 2016 World Malaria Report, the malaria incidence in Haiti declined by > 40% between 2010 and 2015. Though elimination efforts have likely contributed, this time period also corresponded to a national change in diagnostic methods. METHODS: Monthly reports of aggregated patient data were acquired from five clinics in the Ouest Department of Haiti. Generalized linear models were used to compare the number of febrile patients tested, the number of positive tests, and the proportion of tests that were positive (TRP) before and after the national adoption of rapid diagnostic tests (RDTs). RESULTS: Prior to the earthquake when microcopy was used for diagnosis, a total of 1,727 patients with 557 (32.3%) positive; post-earthquake testing was reduced and the TPR was variable; during the post recovery period when RDTs were used exclusivly, a total of 5,132 patients were tested using RDTs, only 83 (1.62%) were positive. Compared to the pre-earthquake period, there was a 69% increase in the number of patients tested (IRR: 1.69; 95% CI IRR 1.59, 2.79), and a 97.0% decrease in the proportion of patients with a positive test result (IRR: 0.03; 95% CI IRR 0.02, 0.04) in the post-recovery period. CONCLUSIONS: While the decline in malaria indicators between 2010 and 2015 has been cited as evidence of progress towards elimination, these reports derived estimates of the malaria burden in Haiti using two different diagnostic tests. Thus, comparison of these periods in the context of malaria elimination should be made with caution.


Subject(s)
Diagnostic Tests, Routine/trends , Malaria/diagnosis , Earthquakes , Haiti , Humans , Microscopy , Time Factors
20.
Am J Drug Alcohol Abuse ; 44(6): 678-685, 2018.
Article in English | MEDLINE | ID: mdl-29863903

ABSTRACT

BACKGROUND: Research suggests that reduced retail alcohol outlet density may be associated with lower prevalence of HIV and other sexually transmitted infections (STIs). On-premise sale of alcohol for immediate consumption is theorized as increasing social interactions that can lead to sexual encounters. OBJECTIVE: We examined associations between on- and off-premise retail alcohol sales licenses and number of newly diagnosed HIV and STI cases in Texas counties. METHODS: Retail alcohol sales license data were obtained from the Texas Alcoholic Beverage Commission. HIV and bacterial STI data were obtained from the Texas Department of State Health Services. Associations between retail alcohol sales licenses and STIs were estimated using spatial linear models and Poisson mixed effects models for over-dispersed count data. RESULTS: Adjusting for county-specific confounders, there was no evidence of residual spatial correlation. In Poisson models, each additional on-premise (e.g., bar and restaurant) alcohol license per 10,000 population in a county was associated with a 1.5% increase (95% CI: 0.4%, 2.6%) in the rate of HIV and a 2.4% increase (95% CI: 1.9%, 3.0%) in the rate of bacterial STIs, adjusting for potential confounders. In contrast, number of off-premise licenses (e.g., take-out stores) was inversely associated with the incidence of STI and HIV, although the association with HIV was not statistically significant. CONCLUSIONS: This study adds to the limited literature on the association between retail alcohol availability and STIs. Additional research is needed on the role of alcohol availability (and policies affecting availability) in the spread of HIV and other STIs.


Subject(s)
Alcohol Drinking/epidemiology , Alcoholic Beverages , Commerce , Marketing , Sexually Transmitted Diseases/epidemiology , Female , Humans , Incidence , Male , Sexual Behavior/statistics & numerical data , Texas/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...